Showing 2,221 - 2,240 results of 19,662 for search '(( significant increase decrease ) OR ( significant ((point decrease) OR (a decrease)) ))', query time: 0.54s Refine Results
  1. 2221

    FT-IR results. by Caglar Akcay (6910697)

    Published 2025
    Subjects:
  2. 2222

    FT-IR results. by Caglar Akcay (6910697)

    Published 2025
    Subjects:
  3. 2223

    FT-IR results. by Caglar Akcay (6910697)

    Published 2025
    Subjects:
  4. 2224

    FT-IR results. by Caglar Akcay (6910697)

    Published 2025
    Subjects:
  5. 2225

    FT-IR results. by Caglar Akcay (6910697)

    Published 2025
    Subjects:
  6. 2226

    Value ranges of three representative points. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  7. 2227

    IQGAP1 is a protein that plays a critical role in regulating the level of apoptosis in endothelial cells. by Shaojun Huang (12489901)

    Published 2025
    “…<p>(A) The Annexin V–FITC/propidium iodide (PI) assay results indicate that Si-IQGAP1 can slightly decrease the apoptosis rate of normal cells, whereas knocking down IQGAP1 in PA-induced cells (PA + Si-IQGAP1) can significantly reduce the apoptosis rate. …”
  8. 2228
  9. 2229
  10. 2230

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  11. 2231

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  12. 2232

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  13. 2233

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  14. 2234

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  15. 2235

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  16. 2236

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  17. 2237

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  18. 2238

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  19. 2239

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  20. 2240

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”