Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
role decrease » rate decreased (Expand Search), road decreased (Expand Search), note decreased (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search), fold increases (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
role decrease » rate decreased (Expand Search), road decreased (Expand Search), note decreased (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search), fold increases (Expand Search)
-
1381
-
1382
Sociodemographic and economic factors of study subjects, Ethiopia, EDHS 2005–2016 (N = 29,525).
Published 2024Subjects: -
1383
-
1384
Scheme of the test section.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1385
Effects on cooling air mass flow rate.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1386
3D model and section view of E3 NGV.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1387
Conditions for uncertainty analyses.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1388
Scheme for mesh convergence study.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1389
Main test parameters.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1390
3-D printed NGV specimen.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1391
Relative error bar of surface temperature.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1392
Effect on the NGV leading edge temperature.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1393
Schematic of the test equipment.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1394
-
1395
-
1396
-
1397
-
1398
Supplementary Material for: Longitudinal Decrease in Left Ventricular Size with Age: Impact on Mortality and Cardiovascular Hospitalization
Published 2025“…Participants were categorized by LVEDD change from baseline: No Change (<5 mm), Decreased (≥5 mm), and Increased (≥5 mm). Results: A decrease in LVEDD was observed in 24% of participants (mean change -9±3 mm) and was significantly associated with older age, female sex, decreased volumes, concentric remodeling and diastolic dysfunction. …”
-
1399
-
1400
Effect of ex vivo treatment with rhTGFβ1 or a TGFβ1 inhibitor on monocyte responses to rgE stimulation. Monocytes and NK cells purified from PBMC collected from 10 RZV recipients (demographics in S4 Table) before vaccination (D0) and 90 days post-vaccination (D90) were combined ex vivo and stimulated with VZV-rgE. A subset of D0 monocyte & NK cocultures was also treated with the TGFβ1 inhibitor LY (D0 LY), and a subset of D90 cocultures were supplemented with rhTGFβ1. The graph shows individual data points, means and p values calculated by Friedman test for repeated measures with FDR correction. LY treatment of cells collected on D0 significantly increased their activation to levels similar to D90....
Published 2025“…LY treatment of cells collected on D0 significantly increased their activation to levels similar to D90. …”