Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
961
Factor-level.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
962
Gradation composition of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
963
Technical specifications of mineral filler.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
964
Technical indicators of coarse aggregate.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
965
Technical specifications of fine aggregates.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
966
Rutting test results of asphalt mixtures.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
967
Gradation composition of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
968
Results of the orthogonal test.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
969
Rutting test results.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
970
Technical Specifications of ZM Modifier.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
971
Gradation curve of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
972
Rutting test machine.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
973
Basic performance indicators of base asphalt.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
974
Rutting specimen.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
975
Orthogonal experimental design.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
976
Immersion Marshall test results.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
977
Fatigue life under different stress ratios.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
978
Freeze–thaw splitting test results.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
979
Preparation flowchart of ZM-modified asphalt.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
980
Immersion Marshall test equipment and specimens.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”