Search alternatives:
significant interaction » significant reduction (Expand Search), significant attention (Expand Search)
interaction decrease » intervention decreases (Expand Search), interaction terms (Expand Search), interaction dataset (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
significant interaction » significant reduction (Expand Search), significant attention (Expand Search)
interaction decrease » intervention decreases (Expand Search), interaction terms (Expand Search), interaction dataset (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
-
1481
Image 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.tif
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1482
Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1483
Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1484
Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1485
Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1486
Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1487
Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1488
Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1489
Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1490
Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1491
Table 5_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1492
Table 6_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1493
Data Sheet 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1494
Table 7_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Antioxidant enzyme activities (SOD, CAT) increased, while oxidative stress markers (MDA) and inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased (p < 0.01). …”
-
1495
Table 1_Demethylase FTO mediates m6A modification of ENST00000619282 to promote apoptosis escape in rheumatoid arthritis and the intervention effect of Xinfeng Capsule.docx
Published 2025“…After XFC treatment, FTO, ENST00000619282, and Bcl-2 expressions were decreased, while YTHDF1 and Bax expressions were increased (all P<0.05). …”
-
1496
JAK/STAT signaling promotes high global translation rates in CySCs.
Published 2025“…(C, C′) A wild-type testis showing highest OPP in CySCs adjacent to the hub and decreasing OPP levels with increasing distance from the hub. …”