Showing 2,461 - 2,480 results of 20,223 for search '(( significant increase decrease ) OR ( significantly ((i decrease) OR (a decrease)) ))', query time: 0.94s Refine Results
  1. 2461
  2. 2462
  3. 2463
  4. 2464
  5. 2465
  6. 2466

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  7. 2467

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  8. 2468

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  9. 2469
  10. 2470
  11. 2471
  12. 2472

    Negative Intrinsic Viscosity in Graphene Nanoparticle Suspensions Induced by Hydrodynamic Slip by Adyant Agrawal (22492518)

    Published 2025
    “…These simulations robustly confirm that the intrinsic viscosity decreases with increasing aspect ratio and becomes negative beyond a threshold ≈5.5, providing a molecular-level confirmation of this behavior in a realistic graphene–water system. …”
  13. 2473

    Negative Intrinsic Viscosity in Graphene Nanoparticle Suspensions Induced by Hydrodynamic Slip by Adyant Agrawal (22492518)

    Published 2025
    “…These simulations robustly confirm that the intrinsic viscosity decreases with increasing aspect ratio and becomes negative beyond a threshold ≈5.5, providing a molecular-level confirmation of this behavior in a realistic graphene–water system. …”
  14. 2474
  15. 2475
  16. 2476
  17. 2477
  18. 2478
  19. 2479
  20. 2480