Showing 621 - 640 results of 13,197 for search '(( significant increase decrease ) OR ( significantly ((linear decrease) OR (largest decrease)) ))', query time: 0.54s Refine Results
  1. 621
  2. 622
  3. 623
  4. 624
  5. 625
  6. 626

    Scores vs Skip ratios on single-agent task. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  7. 627

    Time(s) and GFLOPs savings of single-agent tasks. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  8. 628

    The source code of LazyAct. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  9. 629

    Win rate vs Skip ratios on multi-agents tasks. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  10. 630

    Visualization on SMAC-25m based on <i>LazyAct</i>. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  11. 631

    Single agent and multi-agents tasks for <i>LazyAct</i>. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  12. 632

    Network architectures for multi-agents task. by Hongjie Zhang (136127)

    Published 2025
    “…The inferences reduction significantly decreases the time and FLOPs required by the <i>LazyAct</i> algorithm to complete tasks. …”
  13. 633
  14. 634
  15. 635
  16. 636
  17. 637

    A Locally Linear Dynamic Strategy for Manifold Learning. by Weifan Wang (4669081)

    Published 2025
    “…For 10-30% noise, where the Hebbian network employs a local linear transform, learning selectively increases signal direction alignment (blue) while simultaneously decreasing noise direction alignment (orange). …”
  18. 638
  19. 639
  20. 640