Showing 1,861 - 1,880 results of 14,400 for search '(( significant increase decrease ) OR ( significantly ((lower decrease) OR (linear decrease)) ))', query time: 0.61s Refine Results
  1. 1861

    Magnitude of emission reduction. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  2. 1862

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  3. 1863

    Fixed simulation data. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  4. 1864

    pone.0324800.t002 - by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  5. 1865

    Impact of heat exchanger effectiveness on COP. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  6. 1866

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  7. 1867

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  8. 1868
  9. 1869

    S1 Table - by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  10. 1870

    Characteristic curve of damage variable stage. by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  11. 1871

    Stress-strain and hydraulic pressure curves. by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  12. 1872

    CAD drawing of sealing fixture. by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  13. 1873
  14. 1874
  15. 1875
  16. 1876
  17. 1877
  18. 1878

    S1 Data - by Kazuyoshi Ohkawa (836847)

    Published 2024
    Subjects:
  19. 1879
  20. 1880