Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
1621
S1 Data -
Published 2025“…This interaction was further supported by a significant decrease of ALK phosphorylation in single and combination treatment with 300nM ABT-199. …”
-
1622
-
1623
-
1624
-
1625
-
1626
-
1627
-
1628
-
1629
-
1630
-
1631
-
1632
-
1633
Participant’s data including characteristics and primary outcome measurement.
Published 2024Subjects: -
1634
-
1635
-
1636
-
1637
PTEN KD increases chromatin accessibility.
Published 2024“…Red dots indicate peaks with significantly increased or decreased accessibility with Log2 FC > |0.5|. …”
-
1638
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1639
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1640
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”