Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
point decrease » point increase (Expand Search)
Showing 1,401 - 1,420 results of 14,675 for search '(( significant increase decrease ) OR ( significantly ((point decrease) OR (mean decrease)) ))', query time: 0.49s Refine Results
  1. 1401

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  2. 1402

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  3. 1403

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  4. 1404

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  5. 1405

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  6. 1406

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  7. 1407
  8. 1408
  9. 1409
  10. 1410
  11. 1411
  12. 1412
  13. 1413
  14. 1414
  15. 1415

    Treatment with vitamin D3 reduced the viability of cancer cell lines: <i>1A & 1B.</i> by Vidya G. Bettada (22208808)

    Published 2025
    “…The bars represent the average of three independent experiments with the significance (P) determined by One-Way ANOVA at each time point. …”
  16. 1416
  17. 1417
  18. 1418
  19. 1419
  20. 1420