Search alternatives:
significant inter » significant interest (Expand Search), significant inverse (Expand Search), significant concern (Expand Search)
inter decrease » linear decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant inter » significant interest (Expand Search), significant inverse (Expand Search), significant concern (Expand Search)
inter decrease » linear decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
301
PCA-CGAN model parameter settings.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
302
MIT-BIH dataset proportion analysis chart.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
303
Wavelet transform preprocessing results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
304
PCAECG_GAN.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
305
MIT dataset expansion quantities and Proportions.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
306
Experimental hardware and software environment.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
307
PCA-CGAN K-fold experiment table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
308
Classification model parameter settings.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
309
MIT-BIH expanded dataset proportion chart.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
310
AUROC Graphs of RF Model and ResNet.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
311
PCA-CGAN Model Workflow Diagram.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
312
Structural Diagrams of RF Model and ResNet Model.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
313
PCA-CGAN model convergence curve.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
314
PCA-CGAN Structure Diagram.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
315
Comparison of Model Five-classification Results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
316
PCAECG-GAN K-fold experiment table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
317
PCA-CGAN Pseudocode Table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
318
PCA-CGAN Ablation Experiment Results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
319
S1 Graphical abstract -
Published 2025“…</p><p>Conclusions</p><p>Our analysis showed a significant decrease in mortality from paroxysmal tachycardia since 1999, although there has been a slight increase in recent years. …”
-
320