Search alternatives:
significant inter » significant interest (Expand Search), significant inverse (Expand Search), significant concern (Expand Search)
inter decrease » linear decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
point decrease » point increase (Expand Search)
long decrease » nn decrease (Expand Search), fold decrease (Expand Search), coping decreased (Expand Search)
significant inter » significant interest (Expand Search), significant inverse (Expand Search), significant concern (Expand Search)
inter decrease » linear decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
point decrease » point increase (Expand Search)
long decrease » nn decrease (Expand Search), fold decrease (Expand Search), coping decreased (Expand Search)
-
1
-
2
-
3
S1 Data -
Published 2024“…The total chlorophyll content of blueberry leaves at 25% light intensity increased by 76.4% compared with CK during the blue fruiting stage; the maximum net photosynthetic rate (Pmax), light compensation point (LCP), light saturation point (LSP), rate of dark respirations (Rd), inter-cellular CO<sub>2</sub> concentration (Ci), stomatal conductance (Gs), transpiration rate (Tr), net photosynthesis rate (Pn), and chlorophyll a/b showed a decreasing trend with decreasing light intensity. …”
-
4
-
5
-
6
All data points from Fig 2.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
7
All data points from Fig 5.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
8
All data points from Fig 8.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
9
All data points from Fig 3.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
10
All data points from Fig 1.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
11
All data points from Fig 4.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
12
All data points from Fig 9.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
13
All data points from Fig 7.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
14
All data points from Fig 6.
Published 2025“…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
-
15
-
16
-
17
-
18
-
19
-
20