بدائل البحث:
significant inter » significant interest (توسيع البحث), significant inverse (توسيع البحث), significant concern (توسيع البحث)
inter decrease » linear decrease (توسيع البحث), water decreases (توسيع البحث), teer decrease (توسيع البحث)
we decrease » a decrease (توسيع البحث), nn decrease (توسيع البحث), mean decrease (توسيع البحث)
_ decrease » _ decreased (توسيع البحث), _ decreasing (توسيع البحث)
significant inter » significant interest (توسيع البحث), significant inverse (توسيع البحث), significant concern (توسيع البحث)
inter decrease » linear decrease (توسيع البحث), water decreases (توسيع البحث), teer decrease (توسيع البحث)
we decrease » a decrease (توسيع البحث), nn decrease (توسيع البحث), mean decrease (توسيع البحث)
_ decrease » _ decreased (توسيع البحث), _ decreasing (توسيع البحث)
-
1
<b>The loss of insulin-positive cell clusters precedes the decrease of islet frequency and beta cell area in type 1 diabetes</b>
منشور في 2025"…Age-corrected data revealed decreased islet frequency and increased inter-islet distances in the type 1 diabetes pancreas. …"
-
2
-
3
S1 Raw data -
منشور في 2024"…There were no further variations in hamstring strength within the simulated soccer match for either leg. We did neither measure significant recovery of hamstring strength to pre-match values at the beginning of the second half, as suspected by previous research, nor inter-limb differences, or a deterioration of limb asymmetries in hamstring strength during the simulated soccer match. …"
-
4
S2 Raw data -
منشور في 2024"…There were no further variations in hamstring strength within the simulated soccer match for either leg. We did neither measure significant recovery of hamstring strength to pre-match values at the beginning of the second half, as suspected by previous research, nor inter-limb differences, or a deterioration of limb asymmetries in hamstring strength during the simulated soccer match. …"
-
5
Summary of HSS and LSI during the LIST.
منشور في 2024"…There were no further variations in hamstring strength within the simulated soccer match for either leg. We did neither measure significant recovery of hamstring strength to pre-match values at the beginning of the second half, as suspected by previous research, nor inter-limb differences, or a deterioration of limb asymmetries in hamstring strength during the simulated soccer match. …"
-
6
PCA-CGAN model parameter settings.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
7
MIT-BIH dataset proportion analysis chart.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
8
Wavelet transform preprocessing results.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
9
PCAECG_GAN.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
10
MIT dataset expansion quantities and Proportions.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
11
Experimental hardware and software environment.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
12
PCA-CGAN K-fold experiment table.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
13
Classification model parameter settings.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
14
MIT-BIH expanded dataset proportion chart.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
15
AUROC Graphs of RF Model and ResNet.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
16
PCA-CGAN Model Workflow Diagram.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
17
Structural Diagrams of RF Model and ResNet Model.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
18
PCA-CGAN model convergence curve.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
19
PCA-CGAN Structure Diagram.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
20
Comparison of Model Five-classification Results.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"