Search alternatives:
significant linear » significant clinical (Expand Search), significant level (Expand Search), significant gender (Expand Search)
linear lagged » linear range (Expand Search), linear layer (Expand Search), linear age (Expand Search)
mean decrease » a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
significant linear » significant clinical (Expand Search), significant level (Expand Search), significant gender (Expand Search)
linear lagged » linear range (Expand Search), linear layer (Expand Search), linear age (Expand Search)
mean decrease » a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
1
-
2
-
3
<i>MI</i> and dominant lags between indicator variables and annual total counts for 35-year windows, and comparison of statistically significant links based on <i>MI</i> versus linear correlation.
Published 2022“…<i>(b)</i> Associated dominant time lags (years) for each <i>MI</i> measure. <i>(c)</i> Statistically significant (<i>p</i> < 0.01) detections of <i>MI</i>, linear correlation, or both for each variable pair. …”
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
Strategies for increasing power in the presence of a coupling lag.
Published 2024“…Tests in D-iii and E-iii used the correlation statistic specified in D-ii and E-ii, respectively, except for the parametric test, which always used Pearson correlation. In the lag-<i>l</i> tests, we tested for dependence between {<i>x</i><sub>{1+<i>l</i>}</sub>, …, <i>x</i><sub>{<i>n</i>}</sub>} and {<i>y</i><sub>1</sub>,…,<i>y</i><sub><i>n</i>−<i>l</i></sub>}, where <i>l</i> = 0,2, or 4 for a single lag at significance level 0.05 (iii) or <i>l</i> = 0,1,2,3,4 for a multi-lag test at a Bonferroni-corrected significance level 0.05/5 = 0.01 (iv). …”
-
17
-
18
-
19
-
20