Showing 1 - 20 results of 78,184 for search '(( significant made based ) OR ( significant ((bins decrease) OR (a decrease)) ))', query time: 1.53s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    γ dorsal neurons show decreased calcium responses to odors. by Wang-Pao Lee (6686372)

    Published 2020
    “…Flies show significantly decreased calcium responses to OCT and MCH in each γ dorsal subdomain. …”
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  11. 11

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  12. 12

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  13. 13

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  14. 14

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  15. 15

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  16. 16

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  17. 17

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  18. 18
  19. 19

    Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss <i>in vivo</i> by Kathleen M. McAvoy (7224863)

    Published 2019
    “…Taken together, our data suggest that the contribution of genetic variation in BIN1 locus to AD risk could result from a cell-autonomous reduction of neuronal excitability due to Bin1 decrease, exacerbated by the presence of aggregated Tau, coupled with a non-cell autonomous microglia activation.…”
  20. 20