Search alternatives:
significant results » significant reductions (Expand Search), significant reduction (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
significant results » significant reductions (Expand Search), significant reduction (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
-
2201
-
2202
-
2203
Combination of intraperitoneal and intratumoral administration of vitamin D3 is more effective in reducing the EAC tumor volume compared to just i.p. administration:
Published 2025“…Administration of cisplatin (2.5 mg/Kg) and vitamin D3 (125 µg/Kg) significantly decreased the vessel density (CD31) compared to the tumor control group.…”
-
2204
The hourly temperatures in the phytotron.
Published 2025“…In this study, we conducted a two-year temperature-controlled field experiment (in 2023 and 2024) to investigate the effects of LTS at the tillering, booting, and heading stages on physiological and biochemical characteristics, plant growth, pollen fertility, and grain yield for a japonica rice cultivar (Longgeng31). The results showed that rice photosynthesis gradually decreased as the LTS temperature was decreasing and the LTS duration was increasing. …”
-
2205
-
2206
-
2207
-
2208
Data cleaning and preparation algorithm.
Published 2025“…Cox regression analysis estimated hazard ratios across social-demographic and medical predictors.</p><p>Results</p><p>Over the decade, age-standardized incidence rates decreased from 5.55 to 5.40 per 100,000, while mortality rates rose from 3.75 to 4.75 per 100,000. …”
-
2209
-
2210
Effects of increasing gravel on initial escape latency in non-injured <i>vs.</i>
Published 2025“…</b> However latency was significantly decrease for the 40 g condition in the injured day 0 animals. **** indicates significant differences across increasing amounts of gravel (p < 0.0001). * indicates a post-hoc test confirming a significant difference between injured and non-injured animals 40 g (p < 0.05).…”
-
2211
-
2212
-
2213
ZM Modifier.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2214
Factor-level.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2215
Gradation composition of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2216
Technical specifications of mineral filler.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2217
Technical indicators of coarse aggregate.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2218
Technical specifications of fine aggregates.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2219
Gradation composition of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
2220
Technical Specifications of ZM Modifier.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”