Showing 2,381 - 2,400 results of 21,342 for search '(( significant small decrease ) OR ( significant decrease decrease ))', query time: 0.37s Refine Results
  1. 2381
  2. 2382
  3. 2383
  4. 2384
  5. 2385
  6. 2386
  7. 2387
  8. 2388

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…In addition, compound <b>E35</b> significantly inhibited colony formation and migration, as well as arrested the cell cycle at the S-phase. …”
  9. 2389

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…In addition, compound <b>E35</b> significantly inhibited colony formation and migration, as well as arrested the cell cycle at the S-phase. …”
  10. 2390

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…In addition, compound <b>E35</b> significantly inhibited colony formation and migration, as well as arrested the cell cycle at the S-phase. …”
  11. 2391

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…In addition, compound <b>E35</b> significantly inhibited colony formation and migration, as well as arrested the cell cycle at the S-phase. …”
  12. 2392

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…In addition, compound <b>E35</b> significantly inhibited colony formation and migration, as well as arrested the cell cycle at the S-phase. …”
  13. 2393
  14. 2394
  15. 2395
  16. 2396
  17. 2397
  18. 2398
  19. 2399
  20. 2400