Showing 121 - 140 results of 32,721 for search '(( significant time decrease ) OR ( significantly linked increase ))', query time: 0.80s Refine Results
  1. 121
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  8. 128

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  9. 129

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  10. 130

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  11. 131

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  12. 132

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  13. 133

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  14. 134

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  15. 135

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  16. 136

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
  17. 137
  18. 138
  19. 139
  20. 140