Showing 2,761 - 2,780 results of 5,284 for search '(( significant trend decrease ) OR ( significant ((small decrease) OR (point decrease)) ))', query time: 0.57s Refine Results
  1. 2761

    Final dataset. by Keiko Ochiai (21453423)

    Published 2025
    “…While a significant association between these attributes was observed, a comprehensive path analysis revealed that each attribute independently correlated with higher SDQ scores, suggesting that child maltreatment leads to these difficulties through accelerated aging and decreased eye contact. …”
  2. 2762

    Demographic Characteristics of Participants. by Keiko Ochiai (21453423)

    Published 2025
    “…While a significant association between these attributes was observed, a comprehensive path analysis revealed that each attribute independently correlated with higher SDQ scores, suggesting that child maltreatment leads to these difficulties through accelerated aging and decreased eye contact. …”
  3. 2763

    Diagnostic criteria for Alcoholic cardiomyopathy. by Fei Yan (128878)

    Published 2025
    “…</p><p><b>Results:</b> Globally, ACM burden showed significant declines from 1990 to 2021, with age-standardized rates decreasing by 22.5-37.1% across prevalence, mortality and disability measures. …”
  4. 2764

    Study flow chart. by Raymond Atwine (18574812)

    Published 2025
    “…The risk of ADCs increased from stage 2 (OR: 0.46, p-value: 0.03; 95% CI: 0.23–0.91) to stage 3 (OR: 1.13; p-value: 0.66; 95% CI: 0.65–1.97) but this was not statistically significant. The risk of ADCs decreased with increasing ART duration (<i>P</i> value < 0.05).…”
  5. 2765

    Bar graph showing proportion of NADCs. by Raymond Atwine (18574812)

    Published 2025
    “…The risk of ADCs increased from stage 2 (OR: 0.46, p-value: 0.03; 95% CI: 0.23–0.91) to stage 3 (OR: 1.13; p-value: 0.66; 95% CI: 0.65–1.97) but this was not statistically significant. The risk of ADCs decreased with increasing ART duration (<i>P</i> value < 0.05).…”
  6. 2766

    Baseline characteristics of study participants. by Raymond Atwine (18574812)

    Published 2025
    “…The risk of ADCs increased from stage 2 (OR: 0.46, p-value: 0.03; 95% CI: 0.23–0.91) to stage 3 (OR: 1.13; p-value: 0.66; 95% CI: 0.65–1.97) but this was not statistically significant. The risk of ADCs decreased with increasing ART duration (<i>P</i> value < 0.05).…”
  7. 2767

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  8. 2768

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  9. 2769

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  10. 2770

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  11. 2771

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  12. 2772

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  13. 2773

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  14. 2774

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  15. 2775

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  16. 2776

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  17. 2777

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  18. 2778

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  19. 2779

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  20. 2780

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”