Search alternatives:
significantly predicted » significantly reduced (Expand Search), significantly reduce (Expand Search), significant predictor (Expand Search)
predicted decrease » predicted secreted (Expand Search), reported decrease (Expand Search)
linear decrease » linear increase (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significantly predicted » significantly reduced (Expand Search), significantly reduce (Expand Search), significant predictor (Expand Search)
predicted decrease » predicted secreted (Expand Search), reported decrease (Expand Search)
linear decrease » linear increase (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1
-
2
-
3
-
4
The flexural lumber properties of Pinus patula Schiede ex Schltdl. & Cham. improve with decreasing initial tree spacing
Published 2025“…After accounting for ring width differences, there remained a significant effect of initial spacing on the parameters of models predicting microfibril angle and wood density.…”
-
5
-
6
-
7
Multiple linear regression analysis results.
Published 2025“…Cohesiveness varied without a clear linear trend, showing significant changes at specific IDDSI levels for meats, grains, and tubers (<i>p</i>≤0.05). …”
-
8
Model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
9
-
10
Empirical model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
11
Model prediction error trend chart.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
12
Model prediction error analysis index.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
13
Structure diagram of ensemble model.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
14
Fitting formula parameter table.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
15
Test plan.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
16
Fitting surface parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
17
Model generalisation validation error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
18
Fitting curve parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
19
Test instrument.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
20
Empirical model establishment process.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”