Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5761
The trends in the expression of inflammation-related genes in liver tissue.
Published 2025Subjects: -
5762
-
5763
-
5764
-
5765
-
5766
-
5767
-
5768
-
5769
-
5770
-
5771
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5772
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5773
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5774
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5775
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5776
-
5777
-
5778
-
5779
-
5780