Showing 6,101 - 6,120 results of 21,342 for search '(( significantly ((a decrease) OR (nn decrease)) ) OR ( significant decrease decrease ))', query time: 0.49s Refine Results
  1. 6101
  2. 6102
  3. 6103
  4. 6104
  5. 6105
  6. 6106
  7. 6107
  8. 6108
  9. 6109
  10. 6110
  11. 6111
  12. 6112

    Experimental design of this study. by Renya Kawakami (20469088)

    Published 2024
    “…In fact, naive old males exhibited significantly higher paternity success compared with old males who had previously mated. …”
  13. 6113

    All relevant data of this study. by Renya Kawakami (20469088)

    Published 2024
    “…In fact, naive old males exhibited significantly higher paternity success compared with old males who had previously mated. …”
  14. 6114
  15. 6115

    Preference for the EIA – conjoint results. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  16. 6116

    Marginal means – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  17. 6117

    Sample attribute table. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  18. 6118

    Subgroup analysis – Political affiliation. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  19. 6119

    Sample scenario description. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  20. 6120

    AMCEs – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”