Search alternatives:
significant level » significance level (Expand Search), significance levels (Expand Search), significant gender (Expand Search)
larger decrease » marked decrease (Expand Search)
alter decrease » water decreases (Expand Search), teer decrease (Expand Search), alter disease (Expand Search)
level decrease » levels decreased (Expand Search), level increased (Expand Search), teer decrease (Expand Search)
significant level » significance level (Expand Search), significance levels (Expand Search), significant gender (Expand Search)
larger decrease » marked decrease (Expand Search)
alter decrease » water decreases (Expand Search), teer decrease (Expand Search), alter disease (Expand Search)
level decrease » levels decreased (Expand Search), level increased (Expand Search), teer decrease (Expand Search)
-
3541
-
3542
-
3543
-
3544
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3545
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3546
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3547
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3548
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3549
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3550
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3551
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3552
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3553
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3554
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3555
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3556
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3557
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3558
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
-
3559
-
3560