Search alternatives:
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
alter decrease » larger decrease (Expand Search), water decreases (Expand Search), alter disease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
alter decrease » larger decrease (Expand Search), water decreases (Expand Search), alter disease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
521
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
-
522
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
-
523
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
-
524
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
-
525
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
-
526
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
-
527
-
528
-
529
-
530
-
531
-
532
-
533
-
534
-
535
-
536
-
537
-
538
NeuN expression and neuronal apoptosis in Sham and severely injured groups.
Published 2025Subjects: -
539
-
540