Showing 1,161 - 1,180 results of 14,705 for search '(( significantly ((altered decrease) OR (mean decrease)) ) OR ( significant increase decrease ))', query time: 0.49s Refine Results
  1. 1161
  2. 1162
  3. 1163
  4. 1164
  5. 1165
  6. 1166
  7. 1167
  8. 1168

    Effectiveness of abdominal bracing core exercises as rehabilitation therapy for reducing abdominal symptoms in patients with autosomal dominant polycystic kidney disease and signif... by Jaeyeong Yoo (17292907)

    Published 2025
    “…After the intervention, pain and pressure-related symptoms significantly decreased in some cases; however, gastrointestinal symptoms did not improve. …”
  9. 1169
  10. 1170
  11. 1171
  12. 1172
  13. 1173

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  14. 1174

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  15. 1175

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  16. 1176

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  17. 1177

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  18. 1178

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  19. 1179

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. …”
  20. 1180