Showing 1,901 - 1,920 results of 5,601 for search '(( significantly ((better decrease) OR (greatest decrease)) ) OR ( significantly higher decrease ))', query time: 0.47s Refine Results
  1. 1901
  2. 1902
  3. 1903
  4. 1904
  5. 1905
  6. 1906
  7. 1907
  8. 1908
  9. 1909

    Characteristics of the respondents (n = 2,151). by Mohammad Delwer Hossain Hawlader (11558838)

    Published 2024
    Subjects: “…considered statistically significant…”
  10. 1910

    Determinants of HPV vaccine acceptance. by Mohammad Delwer Hossain Hawlader (11558838)

    Published 2024
    Subjects: “…considered statistically significant…”
  11. 1911
  12. 1912

    Results of redundancy analysis. by Bianhua Zhang (22430652)

    Published 2025
    “…The positive connection proportion and modules of bacteria in LFA was higher than that in NL, while the aggregation coefficient decreased. …”
  13. 1913
  14. 1914

    Overall model framework. by Ke Yan (331581)

    Published 2024
    “…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
  15. 1915

    Key parameters of LSTM training model. by Ke Yan (331581)

    Published 2024
    “…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
  16. 1916

    Comparison chart of model evaluation results. by Ke Yan (331581)

    Published 2024
    “…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
  17. 1917

    Model performance evaluation results. by Ke Yan (331581)

    Published 2024
    “…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
  18. 1918

    The result compared with other existing methods. by Ke Yan (331581)

    Published 2024
    “…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
  19. 1919
  20. 1920

    Test equipment. by Haotian Guo (6620120)

    Published 2025
    “…The cooling rate significantly affected the frost heave ratio: under closed conditions, the ratio decreased, whereas under open water supply conditions, the vertical frost heave displacement increased with higher cooling rates.Moisture migration within the specimen was notably different under the two replenishment conditions. …”