Search alternatives:
significant linear » significant clinical (Expand Search), significant gender (Expand Search), significant level (Expand Search)
better decrease » greater decrease (Expand Search), teer decrease (Expand Search), between decreased (Expand Search)
linear decrease » linear increase (Expand Search)
significant linear » significant clinical (Expand Search), significant gender (Expand Search), significant level (Expand Search)
better decrease » greater decrease (Expand Search), teer decrease (Expand Search), between decreased (Expand Search)
linear decrease » linear increase (Expand Search)
-
2261
The TOR inhibitors Rapamycin and AZD-8055 strongly reduce RPS6 phosphorylation and cell proliferation in Vasa2+/Piwi1+ cells.
Published 2025“…<i>n</i> = 2–4 biological replicates per condition, with 15 individuals per replicate. Significance levels for Student <i>t</i> test are indicated for adjusted <i>p</i> values: *<i>p</i> < 0.05, ***<i>p</i> < 0.001, ***<i>p</i> < 0.0001. d: day(s), n.s.: non-significant. …”
-
2262
-
2263
-
2264
-
2265
-
2266
-
2267
-
2268
-
2269
-
2270
-
2271
-
2272
-
2273
-
2274
-
2275
Complexity comparison of different models.
Published 2025“…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …”
-
2276
Dynamic window based median filtering algorithm.
Published 2025“…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …”
-
2277
Flow of operation of improved KMA.
Published 2025“…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …”
-
2278
Improved DAE based on LSTM.
Published 2025“…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …”
-
2279
Autoencoder structure.
Published 2025“…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …”
-
2280
Analysis of differential microbiome and classification prediction model between case and control groups.
Published 2025“…<p><b>(A)</b> Linear discriminant analysis [LDA; (log10)>2] and (B) effect size (LEfSe) analysis revealed significant differences (P < 0.01) in the microbiota of the case (orange, negative score) and control groups (blue, positive score) groups. …”