Showing 2,041 - 2,060 results of 5,011 for search '(( significantly ((better decrease) OR (mean decrease)) ) OR ( significantly linear decrease ))', query time: 0.31s Refine Results
  1. 2041
  2. 2042
  3. 2043
  4. 2044
  5. 2045
  6. 2046
  7. 2047
  8. 2048

    Changes in alpha diversity in the weeks before anti-TNF-a treatment. by Katrine Carlsen (5477300)

    Published 2024
    “…The analysis found a significant association across all subjects for Shannon diversity with decreasing diversity in the lead up to the next treatment (lmer model, beta = -0.018, <i>p</i> = 0.036) and no association for observed diversity (<i>p</i>>0.1). …”
  9. 2049

    Performance comparison of ML models. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  10. 2050

    Comparative data of different soil samples. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  11. 2051

    Confusion matrix of random forest model. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  12. 2052

    Sensor value scenario for fuzzy logic algorithm. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  13. 2053

    Evaluation metrics of selected ML models. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  14. 2054

    Block diagram of the proposed system. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  15. 2055

    Chart for applicable amount of fertilizers. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  16. 2056

    Cost analysis of irrigation controller unit. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  17. 2057

    Run times of two algorithms. by Gourab Saha (8987405)

    Published 2025
    “…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  18. 2058

    The overall framework of CARAFE. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  19. 2059

    KPD-YOLOv7-GD network structure diagram. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  20. 2060

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”