بدائل البحث:
significantly linked » significantly longer (توسيع البحث), significantly altered (توسيع البحث), significantly higher (توسيع البحث)
better decrease » greater decrease (توسيع البحث), teer decrease (توسيع البحث), between decreased (توسيع البحث)
linked decrease » marked decrease (توسيع البحث), linear decrease (توسيع البحث)
significantly linked » significantly longer (توسيع البحث), significantly altered (توسيع البحث), significantly higher (توسيع البحث)
better decrease » greater decrease (توسيع البحث), teer decrease (توسيع البحث), between decreased (توسيع البحث)
linked decrease » marked decrease (توسيع البحث), linear decrease (توسيع البحث)
-
2201
-
2202
-
2203
-
2204
-
2205
-
2206
Complexity comparison of different models.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
2207
Dynamic window based median filtering algorithm.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
2208
Flow of operation of improved KMA.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
2209
Improved DAE based on LSTM.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
2210
Autoencoder structure.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
2211
-
2212
-
2213
-
2214
-
2215
The sequences of si-RNAs used in this study.
منشور في 2024"…This reduction inhibits cell division, promotes cell death, and decreases cell invasion and migration. CRNN overexpression has been found to enhance cell growth and prevent cells from undergoing natural cell death, and the cancer-promoting effects of CRNN are linked to AKT activation. …"
-
2216
-
2217
Structure diagram of ensemble model.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
2218
Fitting formula parameter table.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
2219
Test plan.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
2220
Fitting surface parameters.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"