Search alternatives:
significantly linked » significantly longer (Expand Search), significantly altered (Expand Search), significantly higher (Expand Search)
better decrease » greater decrease (Expand Search), teer decrease (Expand Search), between decreased (Expand Search)
linked decrease » marked decrease (Expand Search), linear decrease (Expand Search)
significantly linked » significantly longer (Expand Search), significantly altered (Expand Search), significantly higher (Expand Search)
better decrease » greater decrease (Expand Search), teer decrease (Expand Search), between decreased (Expand Search)
linked decrease » marked decrease (Expand Search), linear decrease (Expand Search)
-
2581
Orthogonal experiment scheme and results.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2582
Design variables and range of values.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2583
Comparison of precision of various proxy models.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2584
Comparison between actual and predicted values.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2585
Sample points and numerical simulation results.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2586
Three-dimensional heat transfer model parameters.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2587
Optimal Latin square sampling distribution.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2588
2C discharge rate grid independence test.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2589
Feasibility diagram of design points.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2590
Related parameters of square LIBs.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2591
Multi objective optimization design process.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2592
Battery pack model.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
2593
Value ranges of three representative points.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2594
Signalized intersection in Kunshan.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2595
Dynamic system state in demand scenarios 2.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2596
Survey data of the intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2597
The main notations used in this paper.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2598
Feedback elimination for feedback queue.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2599
A typical cross signalized intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
2600
Four signal stages for the intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”