Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
decrease accuracy » decrease occurs (Expand Search)
better decrease » greater decrease (Expand Search), between decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
decrease accuracy » decrease occurs (Expand Search)
better decrease » greater decrease (Expand Search), between decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
101
Data-Driven Tool for Cross-Run Ion Selection and Peak-Picking in Quantitative Proteomics with Data-Independent Acquisition LC–MS/MS
Published 2023“…The advantages of assimilating DIA data in multiple runs for quantitative proteomics were demonstrated, which can significantly improve the quantification accuracy.…”
-
102
Accuracy and loss values of each model.
Published 2025“…Experimental results demonstrate that the proposed model achieves superior performance in fault diagnosis, attaining an accuracy of 99.62%, significantly outperforming traditional CNNs and other benchmark methods.…”
-
103
MGPC module.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
104
Comparative experiment.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
105
Pruning experiment.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
106
Parameter setting table.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
107
DTADH module.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
108
Ablation experiment.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
109
Multi scale detection.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
110
MFDPN module.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
111
Detection effect of different sizes.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
112
Radar chart comparing indicators.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
113
MFD-YOLO structure.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
114
Detection results of each category.
Published 2025“…The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. …”
-
115
-
116
Architecture of Swin-T model.
Published 2024“…Experimental results demonstrate that compared to the baseline model, the proposed enhanced model achieves a reduction of 2.5G Flops computational complexity and a 16% speed improvement on a private pavement disease dataset, with only a 1.2 percentage point decrease in AUC accuracy. Moreover, compared to other mainstream image classification models, this model exhibits more balanced performance on a public dataset, with improved accuracy and speed that better align with the practical requirements of pavement inspection. …”
-
117
Model the experimental results curve.
Published 2024“…Experimental results demonstrate that compared to the baseline model, the proposed enhanced model achieves a reduction of 2.5G Flops computational complexity and a 16% speed improvement on a private pavement disease dataset, with only a 1.2 percentage point decrease in AUC accuracy. Moreover, compared to other mainstream image classification models, this model exhibits more balanced performance on a public dataset, with improved accuracy and speed that better align with the practical requirements of pavement inspection. …”
-
118
Results of comparison experiments.
Published 2024“…Experimental results demonstrate that compared to the baseline model, the proposed enhanced model achieves a reduction of 2.5G Flops computational complexity and a 16% speed improvement on a private pavement disease dataset, with only a 1.2 percentage point decrease in AUC accuracy. Moreover, compared to other mainstream image classification models, this model exhibits more balanced performance on a public dataset, with improved accuracy and speed that better align with the practical requirements of pavement inspection. …”
-
119
Architecture of Swin Transformer Block.
Published 2024“…Experimental results demonstrate that compared to the baseline model, the proposed enhanced model achieves a reduction of 2.5G Flops computational complexity and a 16% speed improvement on a private pavement disease dataset, with only a 1.2 percentage point decrease in AUC accuracy. Moreover, compared to other mainstream image classification models, this model exhibits more balanced performance on a public dataset, with improved accuracy and speed that better align with the practical requirements of pavement inspection. …”
-
120
Disease distribution map of the GZDL-BD.
Published 2024“…Experimental results demonstrate that compared to the baseline model, the proposed enhanced model achieves a reduction of 2.5G Flops computational complexity and a 16% speed improvement on a private pavement disease dataset, with only a 1.2 percentage point decrease in AUC accuracy. Moreover, compared to other mainstream image classification models, this model exhibits more balanced performance on a public dataset, with improved accuracy and speed that better align with the practical requirements of pavement inspection. …”