بدائل البحث:
significant linear » significant clinical (توسيع البحث), significant gender (توسيع البحث), significant level (توسيع البحث)
better decrease » greater decrease (توسيع البحث), between decreased (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
teer decrease » mean decrease (توسيع البحث), greater decrease (توسيع البحث)
significant linear » significant clinical (توسيع البحث), significant gender (توسيع البحث), significant level (توسيع البحث)
better decrease » greater decrease (توسيع البحث), between decreased (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
teer decrease » mean decrease (توسيع البحث), greater decrease (توسيع البحث)
-
1041
The details of flow chart.
منشور في 2025"…The results indicate that schemes 1, 2, and 4 all have significant low-speed vortices in the return water zone (D zone). …"
-
1042
The physical short-period clogging test device.
منشور في 2025"…The results indicate that schemes 1, 2, and 4 all have significant low-speed vortices in the return water zone (D zone). …"
-
1043
-
1044
-
1045
-
1046
Mean parameter values for the selected crops.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1047
Performance comparison of ML models.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1048
Comparative data of different soil samples.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1049
Confusion matrix of random forest model.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1050
Sensor value scenario for fuzzy logic algorithm.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1051
Evaluation metrics of selected ML models.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1052
Block diagram of the proposed system.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1053
Chart for applicable amount of fertilizers.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1054
Cost analysis of irrigation controller unit.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1055
Run times of two algorithms.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1056
Flow chart of Fuzzy Logic based control system.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1057
Block diagram for IoT-based irrigation system.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1058
Flow chart of Average Value-based control system.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1059
Hardware design for IoT-based irrigation system.
منشور في 2025"…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1060