Showing 3,141 - 3,160 results of 13,596 for search '(( significantly ((greater decrease) OR (linear decrease)) ) OR ( significant increase decrease ))', query time: 0.59s Refine Results
  1. 3141
  2. 3142
  3. 3143
  4. 3144

    Variability in performance and response to task dynamics. by Daniel Ramandi (10047543)

    Published 2025
    “…(B) The analysis of trajectory variability, quantified as DTW distance of consecutive trials, showed a non-significant trend towards greater variability in zQ175 mice, peaking later compared to WT mice (RM two-way ANOVA, genotype p = 0.070 F(1, 20) = 3.660, trial p = 0.0005 F(4.291, 85.82) = 5.351, interaction p = 0.542 F(19, 380) = 0.9329). …”
  5. 3145

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  6. 3146

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  7. 3147

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  8. 3148

    β-NAD increases intracellular cAMP concentration via soluble adenylyl cyclase, but this pathway is not essential for the relaxing effect. by Innokentij Jurastow (22430601)

    Published 2025
    “…<p>(A, B) Recording of intracellular cAMP concentration in HBSMC via FRET, with low FRET ratio indicating high cAMP concentration. β-NAD and isoproterenol cause a decrease in FRET ratio, reflecting rise in intracellular cAMP concentration. …”
  9. 3149
  10. 3150
  11. 3151
  12. 3152
  13. 3153
  14. 3154
  15. 3155
  16. 3156
  17. 3157
  18. 3158
  19. 3159
  20. 3160