Showing 321 - 340 results of 21,342 for search '(( significantly ((greatest decrease) OR (a decrease)) ) OR ( significant decrease decrease ))', query time: 0.61s Refine Results
  1. 321

    Data from: <b>Selection and genetic variation in plasticity drive age-related decreases in among-individual behavioural correlations</b> by Chang Seok Han (21814121)

    Published 2025
    “…Our findings indicate that the magnitudes of both the positive among-individual and genetic correlations were maintained across nymph and young adult stages, but significantly decreased with age during adulthood. This decrease was due to both selection and genetic variation in age-related behavioural plasticity. …”
  2. 322
  3. 323
  4. 324
  5. 325
  6. 326
  7. 327

    Image 2_G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo.tif by Nuzhat Rahman (16660416)

    Published 2024
    “…</p>Results<p>G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. …”
  8. 328

    Image 5_G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo.tif by Nuzhat Rahman (16660416)

    Published 2024
    “…</p>Results<p>G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. …”
  9. 329

    Image 3_G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo.tif by Nuzhat Rahman (16660416)

    Published 2024
    “…</p>Results<p>G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. …”
  10. 330

    Image 1_G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo.tif by Nuzhat Rahman (16660416)

    Published 2024
    “…</p>Results<p>G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. …”
  11. 331

    Image 4_G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo.tif by Nuzhat Rahman (16660416)

    Published 2024
    “…</p>Results<p>G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. …”
  12. 332
  13. 333
  14. 334

    Table 1_A novel α-conotoxin [D1G, ΔQ14] LvIC decreased mouse locomotor activity.xls by Wen Wang (6570)

    Published 2025
    “…</p>Conclusion<p>Our findings indicate that α-conotoxin [D1G, ΔQ14] LvIC significantly decreased locomotor activity in mice. Additionally, it altered gene expression primarily in areas related to neuronal development, synapse formation, and neuron activity, while also reducing synapse strength. …”
  15. 335

    Table 2_A novel α-conotoxin [D1G, ΔQ14] LvIC decreased mouse locomotor activity.xls by Wen Wang (6570)

    Published 2025
    “…</p>Conclusion<p>Our findings indicate that α-conotoxin [D1G, ΔQ14] LvIC significantly decreased locomotor activity in mice. Additionally, it altered gene expression primarily in areas related to neuronal development, synapse formation, and neuron activity, while also reducing synapse strength. …”
  16. 336
  17. 337
  18. 338

    Metabolites with decreasing levels during the development. by Martin Sládek (130663)

    Published 2025
    “…<p>Temporal profiles of polar metabolites and lipids with SCN levels significantly decreasing from E19 to P28. Rhythmicity was determined by eJTK; full or dashed lines depict the profiles that either did or did not pass the significance threshold (FDR-adjusted <i>P</i> < 0.05), respectively.…”
  19. 339
  20. 340

    S1 File - by Hongyu Li (1332669)

    Published 2025
    Subjects: