Showing 5,101 - 5,120 results of 23,970 for search '(( significantly ((greatest decrease) OR (linear increase)) ) OR ( significant decrease decrease ))', query time: 0.66s Refine Results
  1. 5101
  2. 5102
  3. 5103

    Neutrophil Superoxide anion production, Heat map for gene expression from neutrophils of CGD patients, and PCA plot for genome-wide gene expression. by Daniel R. Ambruso (12042605)

    Published 2025
    “…Heat map</b> showing changes for all significant genes between off IFN-γ and 10-12 hours after the 1st and 4th dose (50 µg/m<sup>2</sup>) of the cytokine given on a routine schedule noted in Methods. …”
  4. 5104

    Bar charts showing the numbers of significantly differentially expressed genes for the different contrasts. by Gillian P. McHugo (8965919)

    Published 2025
    “…<p>The extent of the bar above and below 0 on the vertical axis indicates the numbers of significantly differentially expressed genes (DEGs; B-H <i><i>P</i></i><sub>adj.…”
  5. 5105

    Multi-organ differential gene expression changes statistically significant at hypertension onset. by Eden Hornung (20148295)

    Published 2024
    “…<i>Tgfb1</i> is significantly decreased in male SHR kidney compared to female at 16 weeks of age (p = 0.004). …”
  6. 5106
  7. 5107
  8. 5108

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  9. 5109

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  10. 5110

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  11. 5111

    S1 File - by Ingmar Lundquist (46422)

    Published 2025
    “…Additionally, the significance of extracellular NO on GSIS was studied. …”
  12. 5112
  13. 5113
  14. 5114
  15. 5115
  16. 5116

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  17. 5117

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  18. 5118

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  19. 5119

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  20. 5120

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”