Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
gy decreased » _ decreased (Expand Search), _ decrease (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
gy decreased » _ decreased (Expand Search), _ decrease (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
8241
Coordination angle during running.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
8242
Gait retraining with biofeedback.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
8243
Coordination angle during walking.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
8244
PCA-CGAN model parameter settings.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8245
MIT-BIH dataset proportion analysis chart.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8246
Wavelet transform preprocessing results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8247
PCAECG_GAN.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8248
MIT dataset expansion quantities and Proportions.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8249
Experimental hardware and software environment.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8250
PCA-CGAN K-fold experiment table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8251
Classification model parameter settings.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8252
MIT-BIH expanded dataset proportion chart.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8253
AUROC Graphs of RF Model and ResNet.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8254
PCA-CGAN Model Workflow Diagram.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8255
Structural Diagrams of RF Model and ResNet Model.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8256
PCA-CGAN model convergence curve.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8257
PCA-CGAN Structure Diagram.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8258
Comparison of Model Five-classification Results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8259
PCAECG-GAN K-fold experiment table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8260
PCA-CGAN Pseudocode Table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”