Showing 4,121 - 4,140 results of 21,342 for search '(( significantly ((larger decrease) OR (greater decrease)) ) OR ( significant decrease decrease ))', query time: 0.34s Refine Results
  1. 4121
  2. 4122
  3. 4123
  4. 4124
  5. 4125
  6. 4126
  7. 4127
  8. 4128
  9. 4129
  10. 4130
  11. 4131
  12. 4132

    Top 10 significant functional annotations of up-regulated DEGs. by Meitner Cadena (22216261)

    Published 2025
    “…Functional annotations are ordered by decreasing significance, with color indicating significance according to the legend’s color scale, the ratio of genes on the horizontal axis, and DEG count represented by circle size.…”
  13. 4133

    Top 10 significant functional annotations of down-regulated DEGs. by Meitner Cadena (22216261)

    Published 2025
    “…Functional annotations are ordered by decreasing significance, with color indicating significance level based on the legend’s color scale, the ratio of genes on the horizontal axis, and DEG count represented by circle size.…”
  14. 4134
  15. 4135
  16. 4136
  17. 4137
  18. 4138

    Major hyperparameters of RF-SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  19. 4139

    Pseudo code for coupling model execution process. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  20. 4140

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”