Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
-
4761
-
4762
Quantitative estimation of viral concentration from qRT-PCR data using a regression equation.
Published 2025Subjects: -
4763
-
4764
-
4765
Association between workability and clinical characteristics of diabetic workers.
Published 2025Subjects: -
4766
-
4767
-
4768
-
4769
-
4770
-
4771
-
4772
-
4773
Neutrophil Superoxide anion production, Heat map for gene expression from neutrophils of CGD patients, and PCA plot for genome-wide gene expression.
Published 2025“…Heat map</b> showing changes for all significant genes between off IFN-γ and 10-12 hours after the 1st and 4th dose (50 µg/m<sup>2</sup>) of the cytokine given on a routine schedule noted in Methods. …”
-
4774
Bar charts showing the numbers of significantly differentially expressed genes for the different contrasts.
Published 2025“…<p>The extent of the bar above and below 0 on the vertical axis indicates the numbers of significantly differentially expressed genes (DEGs; B-H <i><i>P</i></i><sub>adj.…”
-
4775
Multi-organ differential gene expression changes statistically significant at hypertension onset.
Published 2024“…<i>Tgfb1</i> is significantly decreased in male SHR kidney compared to female at 16 weeks of age (p = 0.004). …”
-
4776
-
4777
-
4778
Comparison with Existing Studies.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
4779
Specimen Preparation and Experimental Setup.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
4780
UCS texts data.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”