يعرض 1,281 - 1,300 نتائج من 5,285 نتيجة بحث عن '(( significantly ((largest decrease) OR (larger decrease)) ) OR ( significantly higher decrease ))', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1281
  2. 1282
  3. 1283
  4. 1284
  5. 1285

    Data. حسب Dong Feng (5375471)

    منشور في 2025
    الموضوعات:
  6. 1286
  7. 1287
  8. 1288

    Fractal dimensions of different sandstones. حسب Dong Feng (5375471)

    منشور في 2025
    الموضوعات:
  9. 1289
  10. 1290

    Baseline characteristics of patients. حسب Su Hwan Park (15158181)

    منشور في 2025
    "…Participants in the progression group were younger (60.7 vs. 65.7 years, P = 0.015) and showed a larger BCVA change (0.20 vs. 0.04, P < 0.001) and greater ERM area decrease (34.2% vs. 11.7%, P < 0.001) during the follow-up period. …"
  11. 1291
  12. 1292
  13. 1293

    Layup muscle synergies. حسب María Benito-de-Pedro (22057468)

    منشور في 2025
    الموضوعات:
  14. 1294
  15. 1295
  16. 1296
  17. 1297
  18. 1298

    Testing set error. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …"
  19. 1299

    Internal structure of an LSTM cell. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …"
  20. 1300

    Prediction effect of each model after STL. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …"