بدائل البحث:
significant processes » significant progress (توسيع البحث), significant promise (توسيع البحث), significant increases (توسيع البحث)
processes decrease » progressive decrease (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
less decrease » mean decrease (توسيع البحث), teer decrease (توسيع البحث), we decrease (توسيع البحث)
significant processes » significant progress (توسيع البحث), significant promise (توسيع البحث), significant increases (توسيع البحث)
processes decrease » progressive decrease (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
less decrease » mean decrease (توسيع البحث), teer decrease (توسيع البحث), we decrease (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
Specimen packaging process.
منشور في 2024"…Under the same <i>JRC</i>, σ<sub><i>i</i></sub> increases with the increase of τ<sub>1</sub>, and Δσ<sub>n</sub> decreases with the increasing τ<sub>1</sub>. Under the same <i>JRC</i> and σ<sub><i>i</i></sub>, τ<sub><i>i</i></sub> is significantly smaller under the UNLCSL path than the CNL path. …"
-
8
Preparation process of concrete joint specimens.
منشور في 2024"…Under the same <i>JRC</i>, σ<sub><i>i</i></sub> increases with the increase of τ<sub>1</sub>, and Δσ<sub>n</sub> decreases with the increasing τ<sub>1</sub>. Under the same <i>JRC</i> and σ<sub><i>i</i></sub>, τ<sub><i>i</i></sub> is significantly smaller under the UNLCSL path than the CNL path. …"
-
9
-
10
-
11
Summary map of all contacts with statistically significant SVM classifications.
منشور في 2024"…Yellow reflects high classification accuracy, while dark blue represents less robust classification accuracy. Time-frequency points with no significant classification value are white.…"
-
12
-
13
Pseudo code for coupling model execution process.
منشور في 2024"…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
-
14
-
15
-
16
-
17
-
18
-
19
-
20