Search alternatives:
less decrease » mean decrease (Expand Search), teer decrease (Expand Search), levels decreased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
less decrease » mean decrease (Expand Search), teer decrease (Expand Search), levels decreased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
501
Matching estimation results of propensity score.
Published 2025“…<div><p>In the context of increasing population aging and decreasing birth rate, it is of great practical significance to explore the impact of social support on the health of elderly men, which is of great practical significance to smoothly promote the strategy of healthy China and actively implement the strategy of population aging. …”
-
502
Sample balance test.
Published 2025“…<div><p>In the context of increasing population aging and decreasing birth rate, it is of great practical significance to explore the impact of social support on the health of elderly men, which is of great practical significance to smoothly promote the strategy of healthy China and actively implement the strategy of population aging. …”
-
503
Robustness test results.
Published 2025“…<div><p>In the context of increasing population aging and decreasing birth rate, it is of great practical significance to explore the impact of social support on the health of elderly men, which is of great practical significance to smoothly promote the strategy of healthy China and actively implement the strategy of population aging. …”
-
504
Results of baseline regression.
Published 2025“…<div><p>In the context of increasing population aging and decreasing birth rate, it is of great practical significance to explore the impact of social support on the health of elderly men, which is of great practical significance to smoothly promote the strategy of healthy China and actively implement the strategy of population aging. …”
-
505
Unmatched kernel density function diagram.
Published 2025“…<div><p>In the context of increasing population aging and decreasing birth rate, it is of great practical significance to explore the impact of social support on the health of elderly men, which is of great practical significance to smoothly promote the strategy of healthy China and actively implement the strategy of population aging. …”
-
506
Data from: Colony losses of stingless bees increase in agricultural areas, but decrease in forested areas
Published 2025“…On average, meliponiculturists lost 43.4 % of their stingless bee colonies annually, 33.3 % during the rainy season, and 22.0 % during the dry season. We found that colony losses during the rainy season decreased with higher abundance of forested areas and increased with higher abundance of agricultural area around meliponaries. …”
-
507
-
508
-
509
-
510
Structure diagram of ensemble model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
511
Fitting formula parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
512
Test plan.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
513
Fitting surface parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
514
Model generalisation validation error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
515
Empirical model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
516
Fitting curve parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
517
Test instrument.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
518
Empirical model establishment process.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
519
Model prediction error trend chart.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
520
Basic physical parameters of red clay.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”