Search alternatives:
less decrease » mean decrease (Expand Search), teer decrease (Expand Search), levels decreased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
less decrease » mean decrease (Expand Search), teer decrease (Expand Search), levels decreased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
161
-
162
Data Sheet 1_Previous COVID-19 infection significantly reduces elastase levels in newly diagnosed pulmonary tuberculosis patients.pdf
Published 2025“…Introduction<p>Tuberculosis (TB) is considered a risk factor for severe COVID-19 disease and the quality of life of patients co-infected with COVID-19 and TB is significantly impacted due to the nature of these diseases. …”
-
163
Green Hydrogen Economy: Scenarios versus Technologies
Published 2025“…While technological advancements in water electrolysis have been extensively researched, the impact of operational scenarios on the levelized cost of hydrogen (LCOH) is less explored. …”
-
164
-
165
-
166
-
167
-
168
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
169
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
170
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
171
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
172
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
173
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
174
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
175
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
176
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
177
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
178
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
179
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
180
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”