Showing 4,521 - 4,540 results of 21,342 for search '(( significantly ((linear decrease) OR (greater decrease)) ) OR ( significant decrease decrease ))', query time: 0.52s Refine Results
  1. 4521

    Fitting Results for Each Operating Condition. by Puzhen An (21169189)

    Published 2025
    “…Furthermore, as the coarse particle content rises, the strata loss rate tends to decrease gradually. The final settlement curve, calculated using the method that considers changes in coarse particle content, is closer to the measured values. …”
  2. 4522

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  3. 4523

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  4. 4524

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  5. 4525
  6. 4526

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  7. 4527
  8. 4528

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  9. 4529
  10. 4530
  11. 4531
  12. 4532
  13. 4533
  14. 4534
  15. 4535
  16. 4536
  17. 4537
  18. 4538

    Summary of results. by Xin Liu (43569)

    Published 2025
    Subjects:
  19. 4539

    Mineral component content. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  20. 4540

    Micro-parameters of the numerical model. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”