بدائل البحث:
significant factors » significant predictors (توسيع البحث)
factors decrease » factors increases (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
significant factors » significant predictors (توسيع البحث)
factors decrease » factors increases (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
Data.
منشور في 2025"…Osteoporosis prevalence remained stable in both males and females. The Linear Mixed-Effects Model analysis revealed significant associations between BMD and several factors: increasing age, female sex, diabetes status and BMI. …"
-
6
Univariate analyses.
منشور في 2025"…Independent variables in the analyses were: 1) age, 2) sex, 3) geographic region, 4) urban or rural residence, and 5) ED visit before or during COVID-19. Multiple linear regression with Generalized Estimating Equations (GEE) modelling was used to identify factors associated with mean monthly ED visits. …"
-
7
Overview of individuals in the study.
منشور في 2025"…Independent variables in the analyses were: 1) age, 2) sex, 3) geographic region, 4) urban or rural residence, and 5) ED visit before or during COVID-19. Multiple linear regression with Generalized Estimating Equations (GEE) modelling was used to identify factors associated with mean monthly ED visits. …"
-
8
Multivariate analyses.
منشور في 2025"…Independent variables in the analyses were: 1) age, 2) sex, 3) geographic region, 4) urban or rural residence, and 5) ED visit before or during COVID-19. Multiple linear regression with Generalized Estimating Equations (GEE) modelling was used to identify factors associated with mean monthly ED visits. …"
-
9
Association between FF Proximity and BMI by sex.
منشور في 2025"…The overall association between FF proximity and BMI was not significant but modified by sex (p-<sub>heterogeneity</sub> <0.001). …"
-
10
Structure diagram of ensemble model.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
11
Fitting formula parameter table.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
12
Test plan.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
13
Fitting surface parameters.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
14
Model generalisation validation error analysis.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
15
Empirical model prediction error analysis.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
16
Fitting curve parameters.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
17
Test instrument.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
18
Empirical model establishment process.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
19
Model prediction error trend chart.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
20
Basic physical parameters of red clay.
منشور في 2024"…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"