Search alternatives:
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
linear decrease » linear increase (Expand Search)
Showing 5,781 - 5,800 results of 14,520 for search '(( significantly ((linear decrease) OR (mean decrease)) ) OR ( significantly increased decrease ))', query time: 0.50s Refine Results
  1. 5781

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…The results demonstrate that higher temperatures lead to lower gas uptake and slower hydrate formation kinetics, as increased temperature reduces heat distribution efficiency. …”
  2. 5782

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…The results demonstrate that higher temperatures lead to lower gas uptake and slower hydrate formation kinetics, as increased temperature reduces heat distribution efficiency. …”
  3. 5783

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…The results demonstrate that higher temperatures lead to lower gas uptake and slower hydrate formation kinetics, as increased temperature reduces heat distribution efficiency. …”
  4. 5784

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…The results demonstrate that higher temperatures lead to lower gas uptake and slower hydrate formation kinetics, as increased temperature reduces heat distribution efficiency. …”
  5. 5785

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…The results demonstrate that higher temperatures lead to lower gas uptake and slower hydrate formation kinetics, as increased temperature reduces heat distribution efficiency. …”
  6. 5786
  7. 5787

    Risk Illustration. by Iftikhar Ali Ch (20783753)

    Published 2025
    “…The binary regression model indicated that a higher BMI was associated with an increased risk of SCD (HR = 1.064, 95% CI: 1.012–1.118, p = 0.014). …”
  8. 5788

    Predictors of SCD. by Iftikhar Ali Ch (20783753)

    Published 2025
    “…The binary regression model indicated that a higher BMI was associated with an increased risk of SCD (HR = 1.064, 95% CI: 1.012–1.118, p = 0.014). …”
  9. 5789

    Clinical outcomes. by Iftikhar Ali Ch (20783753)

    Published 2025
    “…The binary regression model indicated that a higher BMI was associated with an increased risk of SCD (HR = 1.064, 95% CI: 1.012–1.118, p = 0.014). …”
  10. 5790

    Obesity and Depressed Ejection Fraction. by Iftikhar Ali Ch (20783753)

    Published 2025
    “…The binary regression model indicated that a higher BMI was associated with an increased risk of SCD (HR = 1.064, 95% CI: 1.012–1.118, p = 0.014). …”
  11. 5791

    Kaplan Meier curve. by Iftikhar Ali Ch (20783753)

    Published 2025
    “…The binary regression model indicated that a higher BMI was associated with an increased risk of SCD (HR = 1.064, 95% CI: 1.012–1.118, p = 0.014). …”
  12. 5792

    Overall view of the slurry. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  13. 5793

    Definitions of variables. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  14. 5794

    Realistic structure diagram of testing equipment. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  15. 5795

    Engineering geological cross section diagram. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  16. 5796

    The equipped sensors on steel pipes. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  17. 5797

    Close-up view of the slurry. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  18. 5798

    The physical index properties of the loess. by Jiawei Fan (8822046)

    Published 2024
    “…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
  19. 5799
  20. 5800

    Numbers of nuclei and centrioles per cell. by Yang-In Yim (324355)

    Published 2025
    “…Note that the values in (D) for HSET KD and combined KD of Myo10 KD and HSET, while significantly different from the control, represent decreases in centriole number, not increases (these decreases may be due to the anti-proliferative effects of HSET KD). …”