Showing 5,221 - 5,240 results of 13,120 for search '(( significantly ((linear decrease) OR (teer decrease)) ) OR ( significantly increased decrease ))', query time: 0.47s Refine Results
  1. 5221

    Schematic diagram of the wet/dry cycle process. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  2. 5222

    Quantitative analysis table of mix composition. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  3. 5223

    Basic physical indexes of red clay. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  4. 5224

    Sample preparation process diagram. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  5. 5225

    Layout plan of settlement monitoring points. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  6. 5226

    SCA-2 curing agent basic parameters. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  7. 5227

    Average wellness for matchday, MD by Ivan Baptista (5278874)

    Published 2025
    “…<div><p>Background</p><p>Exposure to match loads significantly affects physiological and psychological indicators and, consequently, players’ wellness. …”
  8. 5228

    Seedling and hairy roots of <i>Echinacea purpurea.</i> by Samane Khalili (21560106)

    Published 2025
    “…In contrast, 5 and 10% (<i>v/v</i>) of <i>P. indica</i> CE, regardless of addition time, significantly decreased HRs growth compared to the control. …”
  9. 5229

    <i>Piriformospora indica</i> in PDB medium. by Samane Khalili (21560106)

    Published 2025
    “…In contrast, 5 and 10% (<i>v/v</i>) of <i>P. indica</i> CE, regardless of addition time, significantly decreased HRs growth compared to the control. …”
  10. 5230

    Scheme of the test section. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  11. 5231

    Effects on cooling air mass flow rate. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  12. 5232

    3D model and section view of E3 NGV. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  13. 5233

    Conditions for uncertainty analyses. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  14. 5234

    Scheme for mesh convergence study. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  15. 5235

    Main test parameters. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  16. 5236

    3-D printed NGV specimen. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  17. 5237

    Relative error bar of surface temperature. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  18. 5238

    Effect on the NGV leading edge temperature. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  19. 5239

    Schematic of the test equipment. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  20. 5240

    Dataset. by Nathan Mubiru (21627195)

    Published 2025
    “…In contrast, samples collected in plain serum tubes kept at room temperature and uncentrifuged, C-peptide and insulin levels decreased significantly to 51% (p = 0.006) and 62% (p = 0. 083) respectively, similarly insulin levels for centrifuged samples declined to 64% (p = 0.083). …”