بدائل البحث:
significance set » significance _ (توسيع البحث), significance level (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
set decrease » step decrease (توسيع البحث), sizes decrease (توسيع البحث), mean decrease (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
significance set » significance _ (توسيع البحث), significance level (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
set decrease » step decrease (توسيع البحث), sizes decrease (توسيع البحث), mean decrease (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
-
1
-
2
-
3
Structure diagram of ensemble model.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
4
Fitting formula parameter table.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
5
Test plan.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
6
Fitting surface parameters.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
7
Model generalisation validation error analysis.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
8
Empirical model prediction error analysis.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
9
Fitting curve parameters.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
10
Test instrument.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
11
Empirical model establishment process.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
12
Model prediction error trend chart.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
13
Basic physical parameters of red clay.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
14
BP neural network structure diagram.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
15
Structure diagram of GBDT model.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
16
Model prediction error analysis index.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
17
Fitting curve parameter table.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
18
Model prediction error analysis.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
19
Recruitment flow diagram of the current study.
منشور في 2025"…Predictors of HRQoL included sociodemographic, psychological, medical, and trauma-related factors collected at baseline. We applied generalized additive mixed models to flexibly capture nonlinear changes in HRQoL over time, and piecewise latent growth curve model to analyze distinct linear phases of recovery across defined time intervals.…"
-
20
Effect of session on winning model parameters for set size = 2 and set size = 4 for both male and females.
منشور في 2024"…Since set size = 2 and set size = 4 days were interspersed, we combined set size data and analyzed sessions chronologically. …"