Showing 1 - 20 results of 139 for search '(( significantly ((lower decrease) OR (a decrease)) ) OR ( significant larger decrease ))~', query time: 0.55s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    Scheme of g-λ model with larger values λ. by Zhanfeng Fan (20390992)

    Published 2024
    “…The stress-deformation model of the single uncoupled joint (g-λ model with λ ≥ 1) is employed to depict the nonlinearity of uncoupled joints, with a greater value of the parameter λ signifying a lower degree of non-linearity in the joint model curve. …”
  13. 13
  14. 14
  15. 15

    Histological scoring system of burned dermis. by Omid Mehrpour (9385929)

    Published 2024
    “…On day 21, the wound size in the Opium 5% group was significantly larger than that in the SSD group. Significantly lower serum levels of MDA were observed in all groups compared to the SSD group on days 2 and 10. …”
  16. 16

    Histological scoring system of burned epidermis. by Omid Mehrpour (9385929)

    Published 2024
    “…On day 21, the wound size in the Opium 5% group was significantly larger than that in the SSD group. Significantly lower serum levels of MDA were observed in all groups compared to the SSD group on days 2 and 10. …”
  17. 17

    Ignition delay process shot by high-speed camera. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  18. 18

    Data disclosure (Bai - manuscript). by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  19. 19

    Experimental bench and corresponding facility. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  20. 20

    Three classic combustion stages of the flame. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”