Showing 1,801 - 1,820 results of 14,486 for search '(( significantly ((lower decrease) OR (greater decrease)) ) OR ( significant increase decrease ))', query time: 0.39s Refine Results
  1. 1801
  2. 1802
  3. 1803

    A schematic view of ACS. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  4. 1804

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  5. 1805

    Shows the amount of emission reductions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  6. 1806

    Comparison COP of our study with Florides et al. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  7. 1807

    Effect of generator temperature on COP. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  8. 1808

    Emission factors. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  9. 1809

    Magnitude of emission reduction. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  10. 1810

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  11. 1811

    Fixed simulation data. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  12. 1812

    pone.0324800.t002 - by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  13. 1813

    Impact of heat exchanger effectiveness on COP. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  14. 1814

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  15. 1815

    Assumed conditions. by Mohammed Qasim Shaheen (21417079)

    Published 2025
    “…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
  16. 1816

    S1 Table - by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  17. 1817

    Characteristic curve of damage variable stage. by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  18. 1818

    Stress-strain and hydraulic pressure curves. by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  19. 1819

    CAD drawing of sealing fixture. by Jiajun Zeng (8854859)

    Published 2024
    “…The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. …”
  20. 1820