Showing 6,081 - 6,100 results of 21,342 for search '(( significantly ((lower decrease) OR (mean decrease)) ) OR ( significant decrease decrease ))', query time: 0.54s Refine Results
  1. 6081
  2. 6082
  3. 6083
  4. 6084

    Fig 4 - by Lingru Ruan (18995544)

    Published 2024
    Subjects:
  5. 6085
  6. 6086
  7. 6087
  8. 6088
  9. 6089
  10. 6090
  11. 6091
  12. 6092

    Bar charts showing the numbers of significantly differentially expressed genes for the different contrasts. by Gillian P. McHugo (8965919)

    Published 2025
    “…<p>The extent of the bar above and below 0 on the vertical axis indicates the numbers of significantly differentially expressed genes (DEGs; B-H <i><i>P</i></i><sub>adj.…”
  13. 6093

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  14. 6094

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  15. 6095

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  16. 6096

    S1 File - by Ingmar Lundquist (46422)

    Published 2025
    “…Additionally, the significance of extracellular NO on GSIS was studied. …”
  17. 6097
  18. 6098
  19. 6099
  20. 6100

    Individual data. by JoEllen M. Sefton (16880253)

    Published 2025
    “…Average oxygen consumption (VO2) was significantly lower (2.36 mL/kg/min) with the exoskeleton (t = 2.81; p = 0.023), and peak VO2 was 3.33 mL/kg/min lower with the exoskeleton (t = 2.37; p = 0.045). …”