Search alternatives:
significantly impact » significant impact (Expand Search), significantly improve (Expand Search), significantly improved (Expand Search)
linear decrease » linear increase (Expand Search)
significantly impact » significant impact (Expand Search), significantly improve (Expand Search), significantly improved (Expand Search)
linear decrease » linear increase (Expand Search)
-
1
-
2
Data.
Published 2025“…Osteoporosis prevalence remained stable in both males and females. The Linear Mixed-Effects Model analysis revealed significant associations between BMD and several factors: increasing age, female sex, diabetes status and BMI. …”
-
3
COVID19 effect on essential services.
Published 2024“…The difference in the trends of services before and during COVID-19 was compared using linear-by-linear tests and the difference of magnitude across the indicators was compared using Autoregressive Integrated Moving Average (ARIMA) interrupted time series analysis at a 5% significance level.…”
-
4
Structure diagram of ensemble model.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
5
Fitting formula parameter table.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
6
Test plan.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
7
Fitting surface parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
8
Model generalisation validation error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
9
Empirical model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
10
Fitting curve parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
11
Test instrument.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
12
Empirical model establishment process.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
13
Model prediction error trend chart.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
14
Basic physical parameters of red clay.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15
BP neural network structure diagram.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16
Structure diagram of GBDT model.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
17
Model prediction error analysis index.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
18
Fitting curve parameter table.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
19
Model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
20